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Abstract: This paper analyzes cost sharing in uncapacitated lot-sizing models with backlogging and
heterogeneous costs. It is assumed that several firms participate in a consortium aiming at satisfying
their demand over the planning horizon with minimal operating cost. Each individual firm has its
own ordering channel and holding technology, but cooperation with other firms consists in sharing
that information. Therefore, the firms that cooperate can use the best ordering channels and holding
technology among members of the consortium. This mode of cooperation is stable. in that allocations
of the overall operating cost exist, so that no group of agents benefit from leaving the consortium.
Our contribution in the current paper is to present a new family of cost sharing allocations with good
properties for enforcing cooperation: the unitary Owen points. Necessary and sufficient conditions
are provided for the unitary Owen points to belong to the core of the cooperative game. In addition,
we provide empirical evidence, through simulation, showing that, in randomly-generated situations,
the above condition is fulfilled in 99% of the cases. Additionally, a relationship between lot-sizing
games and a certain family of production-inventory games, through Owen’s points of the latter, is
described. This interesting relationship enables easily constructing a variety of coalitionally stable
allocations for cooperative lot-sizing models.

Keywords: unitary Owen points; cooperation; cost allocation; coalitional stability

1. Introduction

The economic lot-sizing problem (henceforth ELSP) is a production problem in op-
erations management and inventory theory that has been studied by many researchers
for more than 50 years. The ELSP is an extension of the economic order quantity model
to the case where there are some goods to be produced over a planning horizon, so that
the production lots must be decided, in order to meet certain demand over the given finite
horizon. Demand is usually generated from forecasts or by customer orders, or often
by a combination of both. This production planning model is a common point for most
companies or industries: planning what, when, and how much to produce.

To define the feasible production plans, several parameters of the production system
are usually taken into account: the resource capacity (with or without restrictions) and
all of the inventory costs involved. The simpler production planning model is known as
the single-item uncapacitated lot-sizing model. It corresponds to the production planning
of a single item to meet some demand over a discretized planning horizon. Despite its
simplicity, it already contains most of the modeling elements that are cited above, with the
exception of the capacity constraints.

There are also some other modeling elements that can be found in some situations.
Those elements usually complicate the models and make them more difficult to solve. For
instance, a competitive model for the allocation of capacity from some shared resources.
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In other cases, the products interact through multi-level product structures. Finally, there
may be other elements that are needed to refine the model. For instance, the production
process may allow demand for finished products to be backlogged.

In this case, it is possible to deliver to a customer later than required, but that delay
is pennalized because it has a negative impact on customer satisfaction. The latter is
currently happening, for example, with the main producers of vaccines for COVID-19
(BioNTech, Moderna, Oxford), which do not have enough capacity to deliver all of the
vaccines requested (Pfizer, Moderna, and Astrazeneca) to all countries on time. The reader
is referred to the surveys by [1,2] for a complete and well-organized description of lot-
sizing problems.

Over the last 40 years, single-item uncapacitated lot-sizing problems have been stud-
ied, trying out different formulations that have enabled more efficient solutions to the
problem to be found. Among them, Pochet and Wolsey [3] present a mixed integer pro-
gramming reformulation of the uncapacitated lot-sizing problem with backlogging, which
in an extended space of variables, give strong reformulations using linear programming.

Nevertheless, most of the traditional research on lot-sizing-models focuses on tactical
decision-making by single agents using optimization methods. This approach relies on the
assumption that the outcome of a particular decision is independent of the decisions of
other agents. However, as a result of global interaction, it has also reached supply chain
management, an alternative perspective is becoming more common. Specifically, many
recent research papers recognize the strategic interaction of multiple agents within supply
chains. These agents are often independently owned and motivated companies. The
fact that the outcomes from the agents’ decisions partly depend on the decisions of other
independent agents makes game theory a natural approach to modeling those decisions.
In practice, the agents may behave either cooperatively or noncooperatively, and the recent
literature contains two comprehensive general reviews, by [4] for both cooperative and
noncooperative planning and scheduling games, and by [5,6] for non cooperative lot-
sizing games, with and without capacity restrictions, respectively. However, our focus
is specifically on cooperative lot-sizing models with backlogging, but without capacity
restrictions. Each firm faces demand for a single product in each period and coalitions can
pool orders. Firms cooperate by using the best ordering channel and holding technology
provided by the participants in the consortium, e.g., they produce, hold inventory, pay
backlogged demand, and make orders at the minimum cost among the members of the
coalition. Thus, firms aim at satisfying their demand over the planning horizon with
minimal operating cost. In principle, sharing private information can be seem as a limitation
of this model. However, the reader may notice that this can be easily overcome. To prevent
disclosing private information, one can assume that companies communicate through
a mediator who helps them to make their optimal decisions without having to share
their private information. The mediator implements the cooperation mechanism without
disclosing information, reaching a win–win situation for all entities involved and giving
rise to acceptable costs allocations.

To illustrate this form of cooperation today, let us consider four automotive companies,
Peugeot (P), Citroen (C), Fiat (F), and Iveco (I). They all use the same chassis for their cars
and buy it from a Chinese supplier twice a year (two periods). Peugeot is interested in
buying a larger quantity of chassis to avoid supply problems from China and a possible
increase in transportation costs. In addition, P is able to negotiate with the Chinese supplier
and obtain very competitive unit and period purchasing costs for large-scale order sizes.
P then proposes to the other companies to place a joint order for chassis. Citroen thinks
that this is a good idea, because it has a large warehouse in Vigo where the entire order
can always be stored. Iveco proposes to take advantage of its good contacts with transport
companies and to fleet a ship to transport the joint orders from China to Vigo. The fixed
order and transport costs are included in the set-up costs. Fiat analyzes the proposal and,
although it does not have a long delay per period in the delivery of its cars, and its penalty
costs are the lowest, it concludes that it turns out profitable. The four companies then
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reach an agreement and taking the unit purchasing costs of P, the holding costs of C, the
set-up costs of I and the backlogging costs of F, they place a joint order with the lowest
total cost c(N). We should note that the cooperation of the four companies generates a
reduction in the backlogging costs of P, C, and I (to those of F), because they can now
reduce delivery times to their customers and leave fewer cars undelivered. We wonder
whether there are any kind of unitary prices for the demands, related to inventory costs,
which enable coalitional stable allocations of the overall operating costs to be built among
the automotive companies, so that no group of firms profits from leaving the consortium.

A possible answer may be to consider the Owen point that applies for PI-problems.
The Owen point works very-well as long as there is a strong formulation for the underlying
optimization problem, such as PI-problems, because the dual variables (shadow prices)
are used to construct the core allocations. However, this does not work for SI-problems,
since the corresponding optimization problem has integer variables, and strong duality
does not apply in the original space of variables. In this paper, we further extend the idea
of dual prices and construct an “ad hoc” price type as the sum of the production, inventory
and backlogging costs plus a proportion of the fixed order cost, which depends on the total
demand satisfied in that period. They are called unitary prices. These unit prices enable
replicating the construction of the Owen point by multiplying such unit prices by the
demands and adding in all of the periods. These allocations “a la Owen” are called unitary
Owen points. Unfortunately, one cannot always guarantee that unitary Owen points are
core allocations. Nevertheless, we provide necessary and sufficient conditions for this
situation to hold, i.e., for unitary Owen points to be core allocations and also show, by
simulation empirical evidence, that this condition is satisfied in most cases. Furthermore,
we consider whether it is possible to relate general SI-situations to simpler situations, where
the core is well-known and characterized as in PI-games. In this regard, we prove that the
answer to this question is yes: one can use the Owen point of the surplus game, a PI-game
that measures the excess in costs that occurs with respect to the minimum unit price.

As compared with the existing literature on lot-sizing games, the contributions of
this paper can be summarized, as follows. First of all, when compared with previous
papers on the topic, our model extends the results in [7,8] to deal with backlogging and
heterogeneous costs, whereas the models in those papers only consider homogeneous costs,
and backlogging is not allowed. In addition, we also extend the models in [9,10], since those
models do not allow set-up costs, whereas our new model does. Moreover, with respect to
the cost sharing literature of production-inventory models, this paper introduces a new
family of cost sharing allocations: the unitary Owen points. This family is an extension
of the Owen set that enjoys very-good properties in production-inventory problems. We
also contribute by providing the necessary and sufficient conditions for unitary Owen
points to be core allocations. Furthermore, we empirically show that these conditions are
satisfied for almost any SI-situation, which results in an explicit quasi-solution for this
class of games. Finally, this paper also proves a new result that establishes a relationship
between lot-sizing games and a certain family of PI-games, through the Owen’s points
of the latter. This relationship enables us to analyze cooperative lot-sizing models using
properties of the much simpler and well-known class of PI-games.

The rest of this paper is organized, as follows: the next section reviews the literature
of lot-sizing models. Section 3 formulates SI-problems and it shows that SI-games are
totally balanced, resorting to a result of [3]. Section 4 describes the unitary Owen points,
provides a necessary and sufficient condition for those points to be core allocations, and
gives empirical evidence to consider the unitary Owen point as a quasi-solution for SI-
games. Section 5 presents a relationship between SI-games and a certain family of PI-games
through the Owen’s points of the latter. This interesting relationship simplifies the analysis
and construction of core allocations for SI-games. Finally, Section 6 presents a research
summary and some conclusions.
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2. Literature Review

Several papers have tackled problems that are associated with lot-sizing models and
the interested reader is referred to [1] for an excellent survey. However, in addition to
the references that can be found therein, some interesting recent papers deserve to be
cited, since they consider aspects of coordination and cooperation that are directly related
with our model. Related with the concept of coordination, Gharaei et al. [11] develop an
integrated lot-sizing policy in a multi-level multi-product supply chain under stochastic
conditions with limitations. They use generalised Benders decomposition to obtain a
satisfactory performance in optimal solution, the number of iterations, dual infeasibility,
constraint violation, and complementarity. In addition, Zissis, Ioannou, and Burnetas [12]
study the important aspect of coordination in lot-sizing models. They develop a model
for coordinating lot-sizing decisions under bilateral information asymmetry while using
a mediator. This mediator makes coordination achievable, without enforcing centralized
policies. Therefore, individual objectives can be aligned with channel objectives, reducing
costs and eliminating inefficiencies.

Concerning the analysis of cooperation in lot-sizing models, several papers have con-
sidered the cost sharing aspects of these models. Specifically, Van den Heuvel, Borm, and
Hammers [8] focus on the cooperation in economic lot-sizing situations with homogeneous
costs, but without backlogging (henceforth, ELS-games). Subsequently, Guadiola, Meca,
and Puerto [9,10] present the class of production-inventory games (henceforth, PI-games).
PI-games study the cooperation among heterogeneous companies coming from production-
inventory situations with discrete demand and backlogging, but without set-up costs.
PI-games may be considered to be ELS games without set-up costs, but with backlogging
and heterogeneous costs. They prove that the Owen set, i.e., the set of cost allocations that
are achievable through shadow prices (the dual solutions to the primal linear optimization
problem) (see [13]), is reduced to a unique cost allocation in the class of PI-games. These
authors coined the term Owen point to refer to them and prove that the Owen point is
always a coalitional stable and consistent cost allocation, in the sense that there is no group
of firms that can improve upon or block this point by reducing the aggregated cost for the
group (recall that the core of a cooperative cost game consists of all coalitional stable cost
allocations, usually called core allocations). More recently, Chen and Zhang [7] consider
the ELS-game with general concave ordering costs and they found out that a core allocation
can be computed in polynomial time when all retailers have the same cost parameters
(again homogeneous costs). Their approach is based on linear programming (LP) duality.
Specifically, they prove that there is an optimal dual solution that defines an allocation
in the core and point out that it is not necessarily true that every core allocation can be
obtained by means of dual solutions.

On the other hand, Dreschel [14] focuses on cooperative lot-sizing games in supply
chains. That paper considers several models of cooperation in lot-sizing problems of
different complexity that are analyzed regarding theoretical properties, like monotonicity
or concavity, and solved with a row generation algorithm to find stable cost allocations.
Zeng, Li, and Cai [15] study the ELS-game with perishable inventory. They consider a single
supplier and several retailers that collaborate to place joint orders of known and perishable
demand in a determinate number of periods. They demonstrate that the associate ELS-
game is subadditive and totally balanced. Moreover, they present a core-solution that
allocates, in an equal form, the unit cost to each period.

In another paper, Gopaladesikan and Uhan [16] consider cooperative cost-sharing
games that arise from ELS-problems with remanufacturing options. While studying the
relative strength and integrality gaps of several mathematical optimization formulations
of this problem, they show that the core associated to the cost-sharing game is, in general,
empty. However, they show that, for two specific cases: large initial quantity of low cost
returns and zero setup costs, the cost sharing game has a non-empty core. Finally, they
demonstrate that a cost allocation in the core can be computed in polynomial time. Xu and
Yang [17] present a competitive cost-sharing method with approximate cost recovering and



Mathematics 2021, 9, 869 5 of 19

cross-monotonic for an ELS-game under a weak triangle inequality assumption. They show
the effectiveness of the proposed method with numerical results. In addition, Tsao, Chan,
and Wu [18] investigate the combined effects of an imperfect production process, learning
effect, and lot-sizing integration on a manufacturer-retailer channel for the Nash game and
the cooperation game in an imperfect production system. They also solved the problem
by a search procedure, and studied the relationship between downstream entities of the
supply chain and the upstream to obtain structural and quantitative results. By numerical
experiments, they reach the conclusion that the cooperative policy enables further cost
reduction under a wide range of parameter settings. We conclude this literature review,
recalling that the class of set-up-inventory games (henceforth, SI-games), considered in
this paper, is introduced in [19] as a new class of combinatorial optimization games that
arise from cooperation in lot-sizing problems with backlogging and heterogeneous costs.
That paper proves that the game is balanced, proposes an “ad hoc” parametric family of
cost allocations, and provides sufficient conditions for this family to be stable against the
coalitional defection of firms.

3. SI-Games: Reformulation and Balancedness

We begin by formulating the set-up-inventory problems with backlogging (SI-problems).
Consider T periods, numbered from 1 to T, where the demand for a single product

occurs in each of them. This demand is satisfied by own production, and it can be done
during the production periods, in previous periods (inventory), or later periods (back-
logging). A fixed cost must be paid in each production period. Therefore, the model
includes production, inventory holding, backlogging, and set-up costs. The aim is to find
an optimal ordering plan, which is, a feasible ordering plan that minimizes the sum of
set-up, production, inventory holding and backlogging costs. Although the model assumes
that companies produce their demand, we can interchangeably consider the case where
demand is satisfied either by producing or purchasing. One has simply to interpret that the
purchasing costs can be ordering costs (set-up costs) and unit purchasing costs (variable
costs). The goal is to establish an operational plan in order to satisfy demand at a minimum
total cost. The notation of the parameters and decision variables of the model are described
in Table 1.

Table 1. Notation table.

T number of periods in the planning horizon
dt demand during period t
pt unit production costs in period t
ht unit inventory carrying costs in period t
bt unit backlogging carrying costs in period t
kt set-up cost in period t
M = ∑T

t=1 dt upper bound on the production

Decision variables

qt production during period t
It inventory at the end of the period t
Et backlogged demand at the end of period t
zt a binary variable that assumes value 1 if an order

is placed at the beginning of period t and 0, otherwise

In the following, we recall the mathematical programming formulation for the set-up-
inventory problem (SI-problem). The reader is referred to [3,20] for a detailed discussion of
this model. We denote, by C(d, k, h, b, p), the minimum overall operating cost during the
planning horizon, then
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C(d, k, h, b, p) := min
T

∑
t=1

(ptqt + ht It + btEt + ktzt)

s.t. I0 = IT = E0 = ET = 0,

It − Et = It−1 − Et−1 + qt − dt, ∀t ∈ {1, . . . , T},
qt ≤ M · zt, ∀t ∈ {1, . . . , T},
qt, It, Et, non-negative, integer, ∀t ∈ {1, . . . , T},
zt ∈ {0, 1}, ∀t ∈ {1, . . . , T}.

The above objective function minimizes the sum of all the considered costs over the
planning horizon. The first constraint imposes that the model must start and finish with
an empty inventory. The second group of constraints are flow conservation constraints
that ensure the correct transition of inventory and backlogged demand among periods.
The third group of constraints model that set-up cost is only charged whenever an order
is placed. Zangwill [21] proved that there is an optimal solution to C(d, k, h, b, p), such
that, for each t = 1, . . . , T, Et > 0 and It > 0, simultaneously; that is, there is always an
optimal solution that fulfills the constraints in the formulation of the problem. Therefore,
that formulation provides optimal plans to the problem. Actually, this property and
formulations were already proposed by [3]. Obviously, it does not mean that other optimal
plans dividing the production may not exist, but restriction to these plans is sufficient for
achieving an optimal solution.

In order to simplify the notation, we define Z as a matrix in which all costs are
included, which is, Z := (K, H, B, P) being K, H, B and P the matrices containing the set-up,
inventory carrying, backlogging and unit production costs for all periods t = 1, . . . , T.
A cooperative cost TU-game is an ordered pair (N, c), where N is a finite set, the set of
players, and the characteristic function c is a function from P(N) to R with c(∅) = 0,
where P(N) is the power set of N (i.e., the set of coalitions in N). We use x(S) to denote
∑i∈S xi with x(∅) = 0 for any cost allocation x ∈ Rn and for every coalition S ⊆ N.

For each SI-situation represented by its cost matrices (N, D, Z), we associate a cost
TU-game (N, c), where, for any nonempty coalition S ⊆ N, c(S) := C(dS, kS, hS, bS, pS)
with dS = ∑i∈S di, where di =

(
di

1, ..., di
T
)
, and the rest of the costs will be the minimum

value among all the costs of the players in the coalition S at each one of the periods, serve
as an example pS = [pS

1 , . . . , pS
T ]
′, where pS

t = mini∈S{pi
t} for t = 1, . . . , T. Subsequently,

for each S ⊆ N :

c(S) := min
T

∑
t=1

(
pS

t qt + hS
t It + bS

t Et + kS
t zt

)
s.t. I0 = IT = E0 = ET = 0,

It − Et = It−1 − Et−1 + qt − dS
t , ∀t ∈ {1, . . . , T},

qt ≤ M · zt, ∀t ∈ {1, . . . , T},
qt, It, Et, non-negative, integer, ∀t ∈ {1, . . . , T},
zt ∈ {0, 1}, ∀t ∈ {1, . . . , T}.

Every cost TU-game that is defined in this way is what we call a set-up-inventory
game (SI-game). The reader may notice that every PI-game (as introduced by [9]) is a
SI-game with kt = 0, for all t ∈ T. Moreover, as mentioned above, although the model
assumes that companies produce their demand, we can interchangeably consider the case
where demand is satisfied by either producing or purchasing. One has simply to interpret
that the purchasing costs can be ordering costs (set-up costs) and unit purchasing costs
(variable costs). Recall that the core of a game (N, c) consists of those cost allocations that



Mathematics 2021, 9, 869 7 of 19

divide the cost of the grand coalition, c(N), in a efficient way, so that no coalition has an
incentive to break the consortium because its costs increase. Formally,

Core(N, c) =
{

x ∈ Rn/x(N) = c(N) and x(S) ≤ c(S) for all S ⊂ N
}

.

In the following, as is common in cooperative game theory, we call stable allocations
the elements of the core. Bondareva [22] and Shapley [23] independently provide a general
characterization of games with a nonempty core by means of balancedness. They prove
that (N, c) has a nonempty core if and only if it is balanced. In addition, it is a totally
balanced game (totally balanced games were introduced by Shapley and Shubik in the
study of market games (see [24])) if the core of every subgame is nonempty.

Our goal is to show that SI-games are totally balanced. To do so, we use an easy proof
that is based on duality resorting to a result by [3]. Observe that the characteristic function
c(S) of these games can be written as the optimal value of the following LSI(S) problem:

c(S) = max ∑
1≤t≤T

∑
1≤τ≤T

dS
τ pS

tτλtτ + ∑
1≤t≤T

kS
t zt (LSI(S))

s.t. dS
τ ∑

1≤t≤T
λtτ = dS

τ , ∀τ ∈ {1, . . . , T},

λtτ ≤ zt, ∀t, τ ∈ {1, . . . , T},
λtτ , zt ∈ {0, 1}, ∀t, τ ∈ {1, . . . , T}.

The variables λtτ are equal to 1, if and only if demand in period τ is produced in
period t and zero otherwise. Likewise, the variables zt are equal to 1 if and only if there is
some production at period t. The cost of covering the demand in period τ if the production
is done in period t is given by

pS
tτ =


pS

t if t = τ,
pS

t + ∑τ−1
i=t hS

i if t < τ,
pS

t + ∑t−1
i=τ bS

i if t > τ.
(1)

This is the facility location reformulation by [3] of the SI problem. This formulation
has a strong dual if the underlying graph of the location problem is a tree ([25]). In this
case, the graph is a line and, thus, the mentioned result applies. Let yτ be the dual variable
that is associated with the first constraints and βtτ those that are associated with the second
family of constraints, then the dual is:

c(S) = max ∑
1≤τ≤T

dS
τyτ (DSI(S))

s.t. ∑
1≤τ≤T

βtτ ≤ kS
t , ∀t ∈ {1, . . . , T},

dS
τyτ − βtτ ≤ dS

τ pS
tτ , ∀t, τ ∈ {1, . . . , T},

βtτ ≥ 0, ∀t, τ ∈ {1, . . . , T},
yt free, ∀t ∈ {1, . . . , T}.

Reference [3] proved that the linear relaxation of a SI-problem, LSI(S), has an integral
optimal solution. Hence, the optimal value of its dual problem matches that of the primal
one, which is, v(DSI(S)) = C(dS, kS, hS, bS, pS) = c(S) for all S ⊆ N.

Theorem 1. Every SI-game is totally balanced.
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Proof. Take a SI-situation (N, D, Z) and the associated SI-game (N, c). Consider (y∗, β∗)
to be an optimal solution to dual DSI(N), where y∗ = (y∗1 , ..., y∗T) and β∗ = (β∗11, ..., β∗TT).
It is known from optimality that

T

∑
t=1

y∗t dN
t = v(DSI(N)) = c(N)

Note that the solution (y∗, β∗) is also feasible for any dual problem with S ⊆ N, since
pN ≤ pS, hN ≤ hS, bN

t ≤ bS
t and kN

t ≤ kS
t . Therefore,

T

∑
t=1

y∗t dS
t ≤ v(DSI(S)) = c(S)

Thus, the allocation (∑T
t=1 y∗t di

t)i∈N ∈ Core(N, c).
Note that every subgame of a SI-game is also a SI-game. Hence, we can also conclude

that every SI-game is totally balanced.

4. Unitary Owen Points

In this section, we introduce a new family of cost allocations on the class of SI-games.
This family is inspired by the flavour of the Owen point and its relationship with the
shadow prices of the dual problems that are associated with SI-problems. To define those
cost allocations, it is necessary to describe the set of optimal plans and the unitary prices.

Consider a SI-situation (N, D, Z). A feasible ordering plan for such a situation is
defined by σ ∈ RT , where σt ∈ T ∪ {0} denotes the period where the demand of period t
is ordered. We assume the convention that σt = 0 if and only if dt = 0. It means that no
order can be placed to satisfy demand at period t, since demand is null there. Moreover,
PS(σ) ∈ RT is defined as the operating cost vector that is associated to the ordering plan σ
(henceforth: cost-plan vector) for any coalition S ⊆ N, where

PS
t (σ) =

{
0 if σt = 0,

pS
σtt if σt ∈ {1, ..., T}.

Given an optimal ordering plan, σS, for the SI-problem C(dS, kS, hS, bS, pS), the char-
acteristic function is rewritten, as follows: for any non-empty coalition S ⊆ N,

c(S) = PS(σS)′dS + δ(σS)′kS =
T

∑
t=1

(
PS

t (σ
S)dS

t + δt(σ
S)kS

t

)
,

where, δ(σS) =
(
δt(σS)

)
t∈T and

δt(σ
S) =

{
1 if ∃r ∈ T/σS

r = t ,
0 otherwise.

The set of optimal plans is denoted by Λ(N, D, Z) :=
{(

σS)
S∈P(N)

}
where σS is an

optimal ordering plan that is associated to LSI(S). Note that the set of optimal plans
may be large, since there are often multiple optimal solutions for the program LSI(S).
Core allocations that are built from optimal dual variables are known to exhibit some
questionable properties, as pointed out, for instance, by [26] or [27]. For this reason,
whenever the core is larger than the set of allocations coming from dual variables, it
is interesting to provide some alternative core allocations. In the following, we derive
alternatives that, under mild conditions, are stable, i.e., core allocations for these situations.

We define the unitary prices as the sum of the production, inventory, and backlogging
costs plus a proportion of the fixed order cost which depends on the total demand satisfied
in each period.
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Definition 1. Let (N, D, Z) be a SI-situation and
(
σS)

S∈P(N) ∈ Λ(N, D, Z). For each period
t ∈ T and each coalition S ⊆ N, the unitary price is defined, as follows:

yt

(
σS, dS, zS

)
:=


0 if σS

t = 0,

PS
t (σ

S) +
kS

σS
t

∑m∈QS(σS
t )

dS
m

if σS
t 6= 0,

where QS(t) :=
{

k ∈ T : σS
k = t

}
and zS represent the cost matrix (kS, hS, bS, pS).

The reader should observe that QS(t) is the set of periods that satisfy the demand in
period t, for the optimal plan σS. Note that, for any coalition S ⊆ N, ∑T

t=1 yt
(
σS, dS, zS) ·

dS
t = c(S).

The next proposition shows that we may construct core allocations from the unitary
prices of the grand coalition, as long as they are the cheapest in each period with positive
demand. We shall call them unitary Owen points.

Definition 2. Let (N, D, Z) be a SI-situation and
(
σS)

S∈P(N) ∈ Λ(N, D, Z). The unitary Owen
point is given by

θ
(

σN , dN , zN
)

:=

(
T

∑
t=1

yt

(
σN , dN , zN

)
· di

t

)
i∈N

.

Note that every optimal plan generates a unit price for each period of time and, hence,
a unitary Owen point.

Observe that, from y(σN , dN , zN), we can build a solution (y(σN , dN , zN), β(σN)) with

βσN(τ),τ = 0 if σN(τ) = 0 and βσN(τ),τ =
kN

σN (τ)

∑m∈QN (σN (τ))
dN

m
if σN(τ) 6= 0 satisfying c(N) =

∑T
τ=1 dN

τ yt(σN , dN , zN). However, it may not be a feasible solution of the dual for the grand
coalition whenever PN

τ (σN(τ)) > pN
tτ for some t. Still, the unitary Owen point that is

associated with this dual solution can be a core allocation.
The following example elaborates on a SI-situation with three players and two peri-

ods. The unitary Owen point for the corresponding SI-game is a core allocation, but this
allocation does not come from optimal dual prices.

Example 1. Consider the following SI-situation with two periods and three players and the associ-
ated SI-game, as shown in Table 2:

Table 2. SI-situation with two periods and three players and the associated SI-game.

dS
1 dS

2 pS
1 pS

2 hS
1 bS

1 kS
1 kS

2 c

{1} 2 1 9 9 6 4 6 8 39
{2} 8 2 9 6 9 7 7 9 100
{3} 6 1 5 6 3 5 6 10 44
{1, 2} 10 3 9 6 6 4 6 8 122
{1, 3} 8 2 5 6 3 4 6 8 62
{2, 3} 14 3 5 6 3 5 6 9 100
{1, 2, 3} 16 4 5 6 3 4 6 8 118

The optimal plan for coalition N is σN = (1, 1) with pN(σN) = (5, 8) and y
(
σN , dN , zN) =(

5 + 3
10 , 8 + 3

10
)
. The unitary Owen point θ

(
σN , dN , zN) = (18 + 9

10 , 59, 40 + 1
10

)
∈ Core(N, c).

Note that (y(σN , dN , zN), β(σN)) with β21(σ
N) = 3

10 , β22(σ
N) = 3

10 and βtτ(σN) = 0 for all
the remaining t and τ, is not feasible for the dual problem DSI(N). Indeed, it violates the constraint
dN

2 y2(σ
N , dN , zN)− β22(σ

N) ≤ dN
2 pN

22, since this is equivalent to 32 + 9
10 ≤ 24.
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Therefore, it is clear that the unitary Owen point can provide core allocation, which
does not come from optimal dual prices, although it is not clear under which conditions
this unitary price fulfills this property. The following result provides an easy sufficient
condition for this to happen.

Proposition 1. Let (N, D, Z) be a SI-situation,
(
σS)

S∈P(N) ∈ Λ(N, D, Z), and (N, c) the

associated SI-game. If yt
(
σN , dN , zN) ≤ yt

(
σS, dS, zS) for all t ∈ T and for all S ⊂ N with

dS
t 6= 0, then

θ
(

σN , dN , zN
)
∈ Core(N, c).

Proof. It is straightforward from the definition of the unitary Owen point.

It would be reasonable that, the larger a coalition, the lower its unit prices, since its
members operate with the best technology available in the group. Unfortunately, this
condition is not always satisfied as Example 3 shows. Therefore, we are interested in
finding stronger conditions than the one that is given in Proposition 1. This question is
addressed below.

In order to simplify the notation, for each t ∈ T, we define:

• Cost difference per demand unit between coalition S and R in a period t:

aSR
t := PS

t (σ
S)− PR

t (σ
R).

Note that aSR
t + aRS

t = 0.
• Aggregate demand of coalition S ⊆ N in all of those periods that satisfy its demand

in period t:
αt(S) := ∑

m∈QN(t)
dS

m.

• Aggregate order cost of coalition S ⊆ N :

k(S) := ∑
t∈TS

kS
t ,

where TS :=
{

t ∈ T δt(σS) = 1
}

is the set of ordering periods.

The next theorem provides the necessary and sufficient conditions for the unitary
Owen point to be a core allocation. These conditions state an upper bound for the average
cost savings per unit demand in the grand coalition, for those periods where an order is
placed. Such an upper bound is related to the savings in fixed order costs.

Theorem 2. Let (N, D, Z) be a SI-situation,
(
σS)

S∈P(N) ∈ Λ(N, D, Z), and (N, c) the associ-

ated SI-game. θ
(
σN , dN , zN) ∈ Core(N, c) if and only if there are real weights βS

t , for any S  N
and any t ∈ TN with αt(S) > 0, satisfying that

∑
j∈QN(t)

aNS
j · d

S
j

αt(S)
≤ βS

t ·
k(S)
αt(S)

− kN
t

αt(N)

with ∑t∈TN :αt(S)>0 βS
t ≤ 1.

Proof. (if) Take
(
σS)

S∈P(N) ∈ Λ(N, D, Z) and consider a coalition S  N. We must prove

that θ
(
σN , dN , zN) ∈ Core(N, c), e.g., ∑i∈S θi

(
σN , dN , zN)− c(S) ≤ 0. Indeed,

∑
i∈S

θi

(
σN , dN , zN

)
− c(S)
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=
T

∑
t=1

yt

(
σN , dN , zN

)
· dS

t −
T

∑
t=1

yt

(
σS, dS, zS

)
· dS

t

=
T

∑
t=1

aNS
t · dS

t +
kN

σN
t
· dS

j

∑m∈QN(σN
t ) dN

m
−

kS
σS

t
· dS

j

∑m∈QS(σS
t )

dS
m


= ∑

t∈TN

 ∑
j∈QN(t)

(
aNS

j · d
S
j +

kN
t · dS

j

αt(N)

)− k(S)

= ∑
t∈TN :αt(S)>0

αt(S) · ∑
j∈QN(t)

(
aNS

j · d
S
j

αt(S)

)
+

kN
t · αt(S)
αt(N)

− k(S)

≤ ∑
t∈TN :αt(S)>0

(
βS

t ·
αt(S) · k(S)

αt(S)
− αt(S) · kN

t
αt(N)

+
kN

t · αt(S)
αt(N)

)
− k(S)

= k(S) · ∑
t∈TN :αt(S)>0

βS
t − k(S) ≤ 0

(only if) Consider now that θ
(
σN , dN , zN) ∈ Core(N, c). Then, for all

S ⊂ N, ∑i∈S θi
(
σN , dN , zN)− c(S) ≤ 0 which is equivalent to

∑
t∈TN

 ∑
j∈QN(t)

(
aNS

j · d
S
j +

kN
t · dS

j

αt(N)

) ≤ k(S).

For all t ∈ TN and every coalition S  N with αt(S) > 0, there are always real weights
βS

t with ∑t∈TN βS
t ≤ 1, satisfying

∑
j∈QN(t)

(
aNS

j · d
S
j +

kN
t · dS

j

αt(N)

)
≤ βS

t · k(S),

∑
j∈QN(t)

(
aNS

j · d
S
j

αt(S)

)
+

kN
t · αt(S)

αt(N) · αt(S)
≤ βS

t · k(S)
αt(S)

,

∑
j∈QN(t)

aNS
j · d

S
j

αt(S)
≤ βS

t ·
k(S)
αt(S)

− kN
t

αt(N)
.

The next example illustrates Proposition 1 and Theorem 2. It shows how unitary
Owen points are calculated by using unitary prices.

Example 2. Consider the following SI-situation with three periods and three players with the
associated SI-game, as shown in Table 3:

Table 3. SI-situation with three periods and three players with the associated SI-game.

dS
1 dS

2 dS
3 pS

1 pS
2 pS

3 hS
1 hS

2 bS
1 bS

2 kS
1 kS

2 kS
3 c

{1} 1 3 1 1 1 1 1 1 1 1 3 1 5 8
{2} 2 1 1 2 3 4 1 1 1 1 1 4 8 12
{3} 2 1 3 2 3 5 1 1 1 1 1 1 7 20
{1, 2} 3 4 2 1 1 1 1 1 1 1 1 1 5 13
{1, 3} 3 4 4 1 1 1 1 1 1 1 1 1 5 17
{2, 3} 4 2 4 2 3 4 1 1 1 1 1 1 7 31
{1, 2, 3} 5 5 5 1 1 1 1 1 1 1 1 1 5 22
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An optimal plan is given by Table 4:

Table 4. An optimal plan for the SI-situation.

σS
1 σS

2 σS
3 PS

1 (σS) PS
2 (σS) PS

3 (σS) k(S)

{1} 2 2 2 2 1 2 1
{2} 1 1 1 2 3 4 1
{3} 1 1 1 2 3 4 1
{1, 2} 1 2 2 1 1 2 2
{1, 3} 1 2 2 1 1 2 2
{2, 3} 1 1 1 2 3 4 1
{1, 2, 3} 1 2 2 1 1 2 2

Thus, the unitary prices for the optimal plan above are described in Table 5:

Table 5. The unitary prices associated to the optimal plan above.

y1
(
σS, dS, zS) y2

(
σS, dS, zS) y3

(
σS, dS, zS)

{1} 2 + 1
5 1 + 1

5 2 + 1
5

{2} 2 + 1
4 3 + 1

4 4 + 1
4

{3} 2 + 1
6 3 + 1

6 4 + 1
6

{1, 2} 1 + 1
3 1 + 1

6 2 + 1
6

{1, 3} 1 + 1
3 1 + 1

8 2 + 1
8

{2, 3} 2 + 1
10 3 + 1

10 4 + 1
10

{1, 2, 3} 1 + 1
5 1 + 1

10 2 + 1
10

One can observe that yt
(
σN , dN , zN) ≤ yt

(
σS, dS, zS) for all t ∈ T and, so, by Proposition 1,

θ
(
σN , dN , zN) = (6.6, 5.6, 9.8) ∈ Core(N, c).

On the other hand, the ordering plan for the grand coalition σ̃N = (1, 2, 3) belongs to an
optimal plan and the associated unit prices are y1

(
σ̃N , dN , zN) = 1 + 1

5 , y2
(
σ̃N , dN , zN) = 1 + 1

5
and y3

(
σ̃N , dN , zN) = 1 + 5

5 . Note that for this plan TN = {1, 2, 3}. Theorem 2 is applied here for
the weights that are given in Table 6.

Table 6. Weights associated to the optimal plan.

βS
1 ≥ βS

2 ≥ βS
3 ≥ ∑t∈T N βS

t

{1} −4
5

3
5 0 −1

5
{2} −8

5
−9
5 −2 −27

5
{3} −8

5
−9
5 −6 −47

5
{1, 2} 3

10
4
10 0 7

10
{1, 3} 3

10
4
10 0 7

10
{2, 3} −16

5
−18

5 −8 −27
5

Hence, it follows that θ
(
σ̃N , dN , zN) = (6′8, 5′6, 9′6) ∈ Core(N, c).

This section is completed with a third example showing that, if any of the conditions
either of the Proposition 1 or Theorem 2 fail, the unitary Owen points are no longer
core allocations.

Example 3. Now, consider the following SI-situation with three periods, two players, and the
associated 2-player SI-game, given by Table 7:
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Table 7. SI-situation with three periods and two players with the associated SI-game.

dS
1 dS

2 dS
3 pS

1 pS
2 pS

3 hS
1 hS

2 bS
1 bS

2 kS
1 kS

2 kS
3 c

{1} 0 10 10 1 1 1 1 1 1 1 1 50 15 46
{2} 0 35 0 1 1 1 1 1 1 1 1 50 15 71
{1, 2} 0 45 10 1 1 1 1 1 1 1 1 50 15 115

There is a single optimal ordering plan that is shown in Table 8:

Table 8. An optimal plan for SI-situation.

σS
1 σS

2 σS
3 PS

1 (σS) PS
2 (σS) PS

3 (σS) k(S)

{1} 0 1 3 0 2 1 16
{2} 0 1 0 0 2 0 1
{1, 2} 0 2 2 0 1 2 50

The unitary prices for the optimal plan above are described in Table 9:

Table 9. The unitary prices associated to the optimal plan above.

y1
(
σS, dS) y2

(
σS, dS) y3

(
σS, dS)

{1} 0 2 + 1
10 1 + 15

10

{2} 0 2 + 1
35 0

{1, 2} 0 1 + 50
55 2 + 50

55

Note that θ
(
σN , dN , zN) = (

30 + 200
11 , 35 + 350

11
)
= (48′1̂8, 66′8̂1) is not a core allocation.

Theorem 2 fails here, because TN = {2} and β
{1}
2 ≥ 5

4 .

Numerical Experiments

At first glance, the reader might think that the conditions of Theorem 2 are too
restrictive, i.e., they are only satisfied by a small family of SI-situations. However, an
empirical analysis simulating SI-situations shows that most of the instances satisfy those
conditions. Indeed, we start by randomly generating (using the uniform probability
distribution) a first set of 100,000 instances of SI-situations, so that, for every player and
for each period, the data range in di

t ∈ [0, 30], pi
t, hi

t, bi
t ∈ [0, 10], and ki

t ∈ [0, 50]. Table 10
shows the percentage of SI-situations for which the Unitary Owen point belongs to the core
of the corresponding SI-game.

Table 10. Percentage of instances fulfilling the condition of Theorem 2 for the first set of instances.

Players T = 2 T = 3 T = 4 T = 5

2 99.934% 99.979% 99.993% 100%
3 99.942% 99.983% 99.989% 99.995%
4 99.950% 99.991% 99.996% 99.999%
5 99.974% 99.982% 99.992% 99.998%
6 99.974% 99.993% 99.998% 99.999%
7 99.985% 99.996% 99.999% 100%

It can be seen that the the larger the number of players and periods, the higher the
percentage that some unitary Owen point belongs to the core. In case that we impose
that the demand and the costs are greater than zero: di

t ∈ [1, 30], pi
t, hi

t, bi
t ∈ [1, 10], and

ki
t ∈ [1, 50], the results even improve significantly, as Table 11 shows.
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In the previous simulation, the range of variation for the costs have been chosen, so
that those costs are actually relevant in determining the optimal plans for each coalition. In
addition, if the the set-up costs are large when compared to the other costs, as, for instance,
for di

t ∈ [0, 10], pi
t, hi

t, bi
t ∈ [0, 10] and ki

t ∈ [50, 500] the percentage of instances where the
unitary Owen point is a core allocation is close to 99.995%, even for the case of two players
and two periods. Moreover, if the demand is larger, as happens in the following situation
di

t ∈ [10, 50], pi
t, hi

t, bi
t ∈ [0, 10] and ki

t ∈ [0, 50], percentages of “success” also increase close
to 1 (99.999%).

Table 11. Percentage of instances fulfilling the condition of Theorem 2 for instances with positive costs.

Players T = 2 T = 3 T = 4 T = 5

2 99.984% 99.996% 99.999% 100%
3 99.997% 99.995% 99.999% 99.999%
4 99.998% 99.996% 99.999% 99.998%
5 100% 99.999% 100% 100%
6 100% 100% 100% 100%

5. SI-Games and PI-Games

To complete the paper, we provide a relationship between a generic SI-game and
a specific family of PI-games through Owen’s points of the latter. We use Owen points
from an ad hoc family of PI-situations constructed from core allocations of the so-called
surplus game, which measures the excess in costs that occurs with respect to the minimum
unit price. This interesting relationship simplifies the analysis and construction of core
allocations for SI-games.

First, we introduce the minimum unitary prices for every optimal plan. Denote, by
∆ :=

(
σS)

S∈P(N), an optimal plan in Λ(N, D, Z).

Definition 3. Let (N, D, Z) be a SI-situation. The minimum unitary price for ∆, in each period
t ∈ T, is

y∗t (∆) = min
S⊆N
dS

t 6=0

{yt

(
σS, dS, zS

)
}.

Second, for each coalition, we measure the excess in costs that occurs with respect to
the minimum unit prices. The resulting cost game is what we have called surplus game.

Definition 4. Let (N, D, Z) be a SI-situation and (N, c) the associated SI-game. For any ∆ ∈
Λ(N, D, Z), the surplus game (N, c∆) is defined for all S ⊆ N, as

c∆(S) := c(S)−
T

∑
t=1

y∗t (∆) · dS
t .

Note that the surplus game is a non-negative cost game that measures the increase
in costs by the influence of set-up costs. The first result of this section shows that surplus
games are always balanced.

Proposition 2. Every surplus game (N, c∆) is balanced.
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Proof. It follows from Theorem 1 that every SI-game (N, c) is balanced. Take a core
allocation x ∈ RN for it. For each S ⊂ N, it holds that

x(S) ≤ c(S)⇐⇒ x(S)−
T

∑
t=1

y∗t (∆) · dS
t ≤ c(S)−

T

∑
t=1

y∗t (∆) · dS
t

⇐⇒ x(S)−
T

∑
t=1

y∗t (∆) · dS
t ≤ c∆(S)

⇐⇒ ∑
i∈S

(
xi −

T

∑
t=1

y∗t (∆) · di
t

)
≤ c∆(S).

Moreover x(N) = c(N), which easily implies that ∑i∈N

(
xi −∑T

t=1 y∗t (∆) · di
t

)
=

c∆(N). Hence, we conclude that
(

xi −∑T
t=1 y∗t (∆) · di

t

)
i∈N
∈ Core(N, c∆).

In the following, we use this game to construct core allocations for SI-games by means
of the Owen points of the surplus game, which is an easy PI-game. The next result provides
a necessary and sufficient condition for this purpose: the set-up costs cannot contribute to
any increase in costs for the grand coalition. In other words, there are no costs exceeding
the unit prices of the grand coalition.

Proposition 3. Let (N, c) be a SI-game. For any ∆ ∈ Λ(N, D, Z),

c∆(N) = 0 if and only if

(
T

∑
t=1

y∗t (∆) · di
t

)
i∈N

∈ Core(N, c).

Proof. (If) If c∆(N) = 0 then ∑T
t=1 y∗t (∆) · dN

t = c(N). For each S ⊂ N, ∑i∈S

(
∑T

t=1 y∗t (∆) · di
t

)
= ∑T

t=1 y∗t (∆) · dS
t ≤ ∑T

t=1 yt
(
σS, dS) · dS

t = c(S). Thus,
(

∑T
t=1 y∗t (∆) · di

t

)
i∈N
∈ Core(N, c).

(Only if) If
(

∑T
t=1 y∗t (∆) · di

t

)
i∈N
∈ Core(N, c), it is satisfied that ∑T

t=1 y∗t (∆) · dN
t = c(N), and,

so, c∆(N) = 0.

The main theorem in this section shows that the core of any SI-game consists of the
Owen points of certain PI-games that were obtained from core allocations of surplus games.
To state this theorem, it is necessary to describe a procedure for constructing a PI-situation
from core allocations of surplus games.

Consider a SI-situation (N, D, Z), the associated SI-game (N, c), and the surplus game
(N, c∆), for ∆ ∈ Λ(N, D, Z). For any α ∈ Core(N, c∆),

(
N, D(α), Z

)
is a PI-situation with

Z = (K, H, B, P) and D(α) = [d
1
, . . . , d

n
]′, K = 0, H = [M, . . . , M]′, B = [M, . . . , M]′, P =

[p, . . . , p]′, with p = (y∗1(∆), ..., y∗T(∆), 1), d
i
= (di

1, ..., di
T , αi) for all i ∈ N and M ∈ RN

large enough. This procedure shows that any SI-situation can be transformed into multiple
PI-situations just by using the core of the surplus games.

Theorem 3. Let (N, c) be a SI-game and (N, c∆) the associated surplus game for
∆ ∈ Λ(N, D, Z). Thus,

Core(N, c) =
{

Owen
(

N, D(α), Z
)

: α ∈ Core(N, c∆)
}

.

Proof. As (N, c∆) is balanced, there is at least one α ∈ RN , such that α(S) ≤ c∆(S) =
c(S) − ∑T

t=1 y∗t (∆) · dS
t for all S ⊂ N and α(N) = c(N) − ∑T

t=1 y∗t (∆) · dN
t . Consider a

PI-situation (N, D(α), Z) with T + 1 periods, where

D(α) = [d
1
, . . . , d

n
]′, K = 0, H = [M, . . . , M]′, B = [M, . . . , M]′, P = [p, . . . , p]′
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with p = (y∗1(∆), ..., y∗T(∆), 1), d
i
= (di

1, ..., di
T , αi) for all i ∈ N and M ∈ RN large enough.

For each i ∈ N, Oweni
(

N, D(α), Z
)
= ∑T+1

t=1 y∗t (N)di
t =

(
∑T

t=1 y∗t (∆)d
i
t

)
+ αi. Subsequently,

for all S ⊂ N:

∑
i∈S

Oweni
(

N, D(α), Z
)

=
T

∑
t=1

y∗t (∆) · dS
t + α(S)

≤
T

∑
t=1

y∗t (∆) · dS
t + c(S)−

T

∑
t=1

y∗t (∆) · dS
t = c(S).

Moreover, ∑
i∈N

Oweni
(

N, D(α), Z
)
= ∑T

t=1 y∗t (∆)d
N
t + α(N) = ∑T

t=1 y∗t (∆)d
N
t + c(N)−

∑T
t=1 y∗t (∆)d

N
t = c(N). Thus Owen

(
N, D(α), Z

)
∈ Core(N, c).

On the other hand, if x ∈ Core(N, c), for each S ⊂ N, it holds that

x(S) ≤ c(S);

x(S)−
T

∑
t=1

y∗t (∆) · dS
t ≤ c(S)−

T

∑
t=1

y∗t (∆) · dS
t ;

∑
i∈S

xi −∑
i∈S

(
T

∑
t=1

y∗t (∆) · d
{i}
t

)
≤ c∆(S);

∑
i∈S

(
xi −

T

∑
t=1

y∗t (∆) · d
{i}
t

)
≤ c∆(S);

Moreover, x(N) = c(N) ⇔ ∑
i∈N

(
xi −∑T

t=1 y∗t (∆) · di
t

)
= c∆(N). Thus, for each x ∈

Core(N, c), we can take αi := xi −∑T
t=1 y∗t (∆) · di

t for all i ∈ N, such that α ∈ Core(N, c∆).

From there, it easily follows that Owen
(

N, D(α), Z
)
=
((

∑T
t=1 y∗t (∆) · di

t

)
+ αi

)
i∈N

= x.

We illustrate the procedure above with the Example 3 that is shown above.

Example 4. Consider the two-player SI-game that is given in Example 3. We have shown that
the unitary Owen point is not a core allocation for this example. It can be easily checked that the
minimal unit prices are those shown in Table 12.

Table 12. Minimal unit prices.

y∗1 (∆) y∗2 (∆) y∗3 (∆)

0 1 + 50
55 1 + 15

10

Thus, the surplus game is given by in Table 13

Table 13. The surplus game.

c c∆

{1} 46 1 + 10
11

{2} 71 4 + 2
11

{1, 2} 115 4 + 1
11

Consider a core allocation from the surplus game, for instance, the nucleolus η(N, c∆) =
( 10

11 , 3 2
11 ). We obtain a core allocation for the SI-game just by calculating the Owen point of the
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associated PI-situation
(

N, D(η(N, c∆)), Z
)
. Thus, Owen

(
N, D(η(N, c∆)), Z

)
= (45, 70). It

can be concluded that
η(N, c) = Owen

(
N, D(η(N, c∆)), Z

)
.

In the above example, the nucleolus of the surplus game leads to the nucleolus of
the SI-game through the Owen point. The last result in the paper shows that this close
relationship between both nucleoli always holds, e.g., the nucleolus of any SI-game matches
the Owen point for the PI-situation that is obtained from the nucleolus of the surplus game.

Proposition 4. Let (N, D, Z) be a SI-situation, (N, c) the associated SI-game, and (N, c∆) the
surplus game for ∆ ∈ Λ(N, D, Z). Thus,

Owen
(

N, D(η(N, c∆)), Z
)
= η(N, c).

Proof. It is known that x ∈ Core(N, c) if and only if x∆ :=
(

xi −∑T
t=1 y∗t (∆) · di

t

)
i∈N
∈

Core(N, c∆). Thus, the excess vectors, e(S, x), and e∆(S, x∆) coincide.
For each coalition S ⊆ N, it holds that:

e(S, η(N, c)) = c(S)−∑
i∈S

ηi(N, c)

= c∆(S) +
T

∑
t=1

y∗t (∆) · dS
t −∑

i∈S
ηi(N, c)

= c∆(S)−∑
i∈S

(
ηi(N, c)−

T

∑
t=1

y∗t (∆) · di
t

)
.

Therefore, ηi(N, c∆) = ηi(N, c) − ∑T
t=1 y∗t (∆) · di

t for all i ∈ N, because otherwise
η(N, c) would not be the nucleolus. Moreover,

c∆(S)− ηi(N, c∆) = c(S)−
(

T

∑
t=1

y∗t (∆) · dS
t + ∑

i∈S
ηi(N, c∆)

)
= c(S)−∑

i∈S
Oweni

(
N, D(η(N, c∆)), Z

)
= e(S, Owen

(
N, D(η(N, c∆)), Z

)
).

This implies that Owen
(

N, D(η(N, c∆)), Z
)
= η(N, c).

6. Discussion

The study of cooperation in lot-sizing problems with backlogging and heterogeneous
costs has been previously considered by [19]. The authors prove that there are always
stable allocations of the overall operating cost among the firms, so that no group of agents
benefit from leaving the consortium. They propose a parametric family of cost allocations
and provide sufficient conditions for this to be a stable family against coalitional defections
of firms and focus on those periods of the time horizon that are consolidated, analyzing
their effect on the stability of cost allocations.

This paper completes the study of those cooperative lot-sizing models by presenting
unitary Owen points. As mentioned, the Owen point works very well for constructing
core-allocations in the class of PI-games. Unfortunately, no longer works for SI-problems.
In spite of that, here we have managed to construct a particular kind of prices, which
we call unitary prices, based on the production, inventory, and backlogging costs, and a
proportion of the fixed order cost, which depends on the total demand satisfied in each
period. These unit prices resemble the Owen point and allow to replicate its construction,
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so that these allocations “a la Owen” are called unitary Owen points. These quantities
can be understood as approximate dual prices that allow pricing each firm resources, in
order to distribute, in a stable manner, the overall operating costs. Necessary and sufficient
conditions are provided for the unitary Owen points to belong to the core of the cooperative
game. In addition, we provide empirical evidence, through simulation, showing that, in
randomly generated situations, the above condition is fulfilled in 99% of cases. Finally, a
relationship between lot-sizing games and a certain family of production-inventory games,
through Owen’s points of the latter, is described. This interesting relationship enables us
to easily derive and interpret a variety of coalitionally stable allocations for cooperative
lot-sizing models. The growing literature that is devoted to the study of cooperation in lot-
sizing models shows that there are always ways to allocate the minimum cost that results
from cooperation that are coalitionally stable. In addition, a few algorithms have been
proposed to determine some of these allocations. The main contribution of this paper is that
it presents an explicit cost allocation for cooperative lot-sizing models with backlogging
and heterogeneous costs that is coalitional stable and consistent in 99% of cases.

Moreover, the analysis of cooperation in general lot-sizing models offers a vast field
for future research. We propose the following directions for future research. The first
direction is to find a set of properties the determine the unitary Owen point by means of
an axiomatic characterization. The second direction is to consider lot-sizing models with
capacity constraints, which is, to study capacitated lot-sizing models with backlogging.
We believe that adding restrictions on the companies’ production capacity could create
incentives for them to compete with each other, in a first stage, and to cooperate later, once
the production capacity has been decided. Finally, it would also be interesting to study
the cooperation in lot-sizing models with limited information sharing. Full information
sharing us a typical assumption in cooperative models. However, in supply chains settings,
companies may not release all of their relevant information. Furthermore, it should be
possible to design mechanisms to encourage the firms to release full and true information.
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